Thermal power Station Construction by Limult

Intelligent thermal power plant concept

With the upgrading of productivity, the complexity and dynamics of business activities and the ability to gradually exceed the capabilities of human analysis and optimization, it is necessary to rely on intelligent technology instead of humans for process management, data analysis, decision optimization, and the core goal is to achieve intelligent production activities. The high degree of unity allows the system to work together.

Intelligent thermal Power Plants value and Goals

 In this theoretical context, intelligent thermal power plants have the following three values and goals. First, intelligently realizes the potential hidden danger display of the device, enabling it to operate more efficiently and sustainably. Second, let the machine replace humans and assist the staff to carry out thermal power plant management and operation and maintenance. Third, the production and operation process of the power plant will be more transparent and synergistic, making the management process more flexible and effective. Focusing on the above objectives, the construction of intelligent power plants needs to focus on the three-dimensional dimensions of intelligent sensing, intelligent control and intelligent management.

The big data analysis generated by coal-fired power generation in
thermal power plants is used as a clue to deeply explore the value of data to
create more benefits. To this end, according to the latest definition of the
industry, it can be concluded that the intelligent thermal power plant is based
on modern digital information processing and communication technology, and
integrates technologies such as intelligent sensing, control, management and
execution to achieve synergy with the smart grid. A highly efficient, safe and
environmentally friendly thermal power plant.

At Limult we develop
new, unique construction methods for the installation of major equipment in
thermal power stations, namely boilers, turbines, and generators.

Our delivery records for thermal
power stations

  • Conventional
    thermal power stations that use oil, coal, gas, or other fuels
  • Combined
    cycle thermal power stations
  • Gas
    turbine generator power stations
  • Diesel
    thermal power stations
  • Gas
    engine and other special thermal power stations

Project scope

The
scope of our work includes construction (design, manufacturing, and
installation) and preventive maintenance (modification construction, update
construction, and maintenance).

Contact us at +2347052446249 for more information on our refining industry development services or visit our store at www.limult.com/shop to see more products that we make available for the people.


Hydro-Electric Power Station Construction by Limult

Hydroelectric power station

In hydroelectric power station the kinetic energy developed due to gravity in a falling water from higher to lower head is utilised to rotate a turbine to produce electricity. The potential energy stored in the water at upper water level will release as kinetic energy when it falls to the lower water level. This turbine rotates when the following water strikes the turbine blades. To achieve a head difference of water, hydroelectric electric power station are generally constructed in hilly areas. In the way of the river in hilly areas, an artificial dam is constructed to create required water head. From this dam water is allowed to fall toward downstream in a controlled way to turbine blades. As a result, the turbine rotates due to the water force applied to its blades and hence the alternator rotates since the turbine shaft is coupled with alternator shaft.

The main advantage

An electrical power plant does not require any fuel. It only requires water head which is naturally available after the construction of the required dam.

No fuel means no fuel cost, no combustion, no generation of flue gases, and no pollution in the atmosphere. Due to the absence of fuel combustion, the hydroelectric power plant itself is very neat and clean. In addition to that, it does not produce any pollution to the atmosphere. Also from constructional point of view, it is simpler than any thermal and nuclear power plant.
The constructional cost of a hydroelectric power plant maybe higher than that of other conventional thermal power plants because of construction of a huge dam across the flowing river. The engineering cost in addition to the constructional cost is also high in a hydroelectric power plant. Another disadvantage of this plant is that it cannot be constructed anywhere according to the load centres.
So, long transmission lines are required to transmit the generated power to the load centres.

Limult is a
leader in the design of hydroelectric power plants, with years of experience in
the design and development of these projects. Limult has participated in feasibility studies, preliminary and
tender design, procurement and/or the construction management for major
hydropower projects.

Limult’s expertise in hydroelectric power projects includes:

  • Feasibility Studies
  • Hydropower Engineering
  • Environmental Impact Assessments and Reports
  • Site Investigations
  • Civil, Structural and Mechanical Design
  • Cost Estimates
  • Contract Documents
  • Tender Evaluations
  • Project Management
  • Project Planning
  • Construction Supervision
  • On-site Inspections

Contact Us at +2347052446249 for more information on our redefining industry development services or visit our store at www.limult.com/shop to see more products that we make available for the people.


Electricity Generation in Nigeria by Limult

Nigeria is endowed with large oil,
gas, hydro and solar resources, and it has the potential to generate 12,522 MW
of electric power from existing plants. On most days, however, it is only able
to dispatch around 4,000 MW, which is insufficient for a country of over 195
million people. Power Africa technical support to distribution companies in
Nigeria helped them increase revenue by over $250 million - money that can be
reinvested into the distribution network, improving service and expanding
access. The Nigerian power sector experiences many broad challenges related to
electricity policy enforcement, regulatory uncertainty, gas supply,
transmission system constraints, and major power sector planning shortfalls
that have kept the sector from reaching commercial viability.

Electric Demand and Electrification rate

Nigeria has an electrification rate of 45% and despite this relatively low figure in conjunction with the significant issues undermining power supply in the country, demand for electricity keeps increasing. In 2015, power supply in Nigeria averaged 3.1 GW, which was estimated to be only a third of the country’s minimum demand, with many consumers forced to rely on privately owned generators.

Causes of Failure in the Electrical distribution In Nigeria

The factors include inconsistent and misguided power reform policies; inefficiency in power generation, transmission, distribution and consumption;
and the incompetent work force of the energy companies.

Having stated the above problems of electrical
distribution in Nigeria, Limult Group is presently leading the path of
sustainable and 24/7 uninterrupted power supply to the above mentioned problems
which are;

  • Solving barriers in the gas-to power value chain: this is done by launching a federal coordination mechanism covering gas supplies, generation, transmission and distribution.
  • Plan for renewable energy integration: complete development of the 14 planned solar plants.
  • Investing in new grid infrastructure to facilitate integration of intermitted source.
  •  Integrate mini-grids into DisCo networks to supply power to underserved areas.

Contact Us at +2347052446249 for more information on our redefining industry development services or visit our store at www.limult.com/shop to see more products that we make available for the people.